A differentiable programming method for quantum control

19 Feb 2020  ·  Schäfer Frank, Kloc Michal, Bruder Christoph, Lörch Niels ·

Optimal control is highly desirable in many current quantum systems, especially to realize tasks in quantum information processing. We introduce a method based on differentiable programming to leverage explicit knowledge of the differential equations governing the dynamics of the system. In particular, a control agent is represented as a neural network that maps the state of the system at a given time to a control pulse. The parameters of this agent are optimized via gradient information obtained by direct differentiation through both the neural network \emph{and} the differential equation of the system. This fully differentiable reinforcement learning approach ultimately yields time-dependent control parameters optimizing a desired figure of merit. We demonstrate the method's viability and robustness to noise in eigenstate preparation tasks for three systems: a~single qubit, a~chain of qubits, and a quantum parametric oscillator.

PDF Abstract

Categories


Quantum Physics Disordered Systems and Neural Networks Computational Physics