A study of the effect of the illumination model on the generation of synthetic training datasets

15 Jun 2020  ·  Xin Zhang, Ning Jia, Ioannis Ivrissimtzis ·

The use of computer generated images to train Deep Neural Networks is a viable alternative to real images when the latter are scarce or expensive. In this paper, we study how the illumination model used by the rendering software affects the quality of the generated images. We created eight training sets, each one with a different illumination model, and tested them on three different network architectures, ResNet, U-Net and a combined architecture developed by us. The test set consisted of photos of 3D printed objects produced from the same CAD models used to generate the training set. The effect of the other parameters of the rendering process, such as textures and camera position, was randomized. Our results show that the effect of the illumination model is important, comparable in significance to the network architecture. We also show that both light probes capturing natural environmental light, and modelled lighting environments, can give good results. In the case of light probes, we identified as two significant factors affecting performance the similarity between the light probe and the test environment, as well as the light probe's resolution. Regarding modelled lighting environment, similarity with the test environment was again identified as a significant factor.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods