Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications

14 Sep 2011  ·  Aurelien Decelle, Florent Krzakala, Cristopher Moore, Lenka Zdeborová ·

In this paper we extend our previous work on the stochastic block model, a commonly used generative model for social and biological networks, and the problem of inferring functional groups or communities from the topology of the network. We use the cavity method of statistical physics to obtain an asymptotically exact analysis of the phase diagram... We describe in detail properties of the detectability/undetectability phase transition and the easy/hard phase transition for the community detection problem. Our analysis translates naturally into a belief propagation algorithm for inferring the group memberships of the nodes in an optimal way, i.e., that maximizes the overlap with the underlying group memberships, and learning the underlying parameters of the block model. Finally, we apply the algorithm to two examples of real-world networks and discuss its performance. read more

PDF Abstract
No code implementations yet. Submit your code now


Statistical Mechanics Disordered Systems and Neural Networks Social and Information Networks Physics and Society