ACNN: a Full Resolution DCNN for Medical Image Segmentation

26 Jan 2019  ·  Xiao-Yun Zhou, Jian-Qing Zheng, Peichao Li, Guang-Zhong Yang ·

Deep Convolutional Neural Networks (DCNNs) are used extensively in medical image segmentation and hence 3D navigation for robot-assisted Minimally Invasive Surgeries (MISs). However, current DCNNs usually use down sampling layers for increasing the receptive field and gaining abstract semantic information. These down sampling layers decrease the spatial dimension of feature maps, which can be detrimental to image segmentation. Atrous convolution is an alternative for the down sampling layer. It increases the receptive field whilst maintains the spatial dimension of feature maps. In this paper, a method for effective atrous rate setting is proposed to achieve the largest and fully-covered receptive field with a minimum number of atrous convolutional layers. Furthermore, a new and full resolution DCNN - Atrous Convolutional Neural Network (ACNN), which incorporates cascaded atrous II-blocks, residual learning and Instance Normalization (IN) is proposed. Application results of the proposed ACNN to Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) image segmentation demonstrate that the proposed ACNN can achieve higher segmentation Intersection over Unions (IoUs) than U-Net and Deeplabv3+, but with reduced trainable parameters.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods