Attosecond XUV probing of vibronic quantum superpositions in Br$_2^+$

24 May 2020  ·  Kobayashi Yuki, Neumark Daniel M., Leone Stephen R. ·

Ultrafast laser excitation can create coherent superpositions of electronic states in molecules and trigger ultrafast flow of electron density on few- to sub-femtosecond time scales. While recent attosecond experiments have addressed real-time observation of these primary photochemical processes, the underlying roles of simultaneous nuclear motions and how they modify and disturb the valence electronic motion remain uncertain. Here, we investigate coherent electronic-vibrational dynamics induced among multiple vibronic levels of ionic bromine (Br$_2^+$), including both spin-orbit and valence electronic superpositions, using attosecond transient absorption spectroscopy. Decay, revival, and apparent frequency shifts of electronic coherences are measured via characteristic quantum beats on the Br-$3d$ core-level absorption signals. Quantum-mechanical simulations attribute the observed electronic decoherence to broadened phase distributions of nuclear wave packets on anharmonic potentials. Molecular vibronic structure is further revealed to be imprinted as discrete progressions in electronic beat frequencies. These results provide a future basis to interpret complex charge-migration dynamics in polyatomic systems.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Chemical Physics