Autler-Townes splitting and acoustically induced transparency based on Love waves interacting with pillared meta-surface

29 May 2019  ·  Liu Yuxin, Talbi Abdelkrim, Boudouti El Houssaine El, Matar Olivier Bou, Pernod Philippe, Djafari-Rouhani Bahram ·

Autler-Townes Splitting (ATS) and Electromagnetically Induced Transparency (EIT) are similar phenomena but distinct in nature. They have been widely discussed and distinguished by employing the Akaike information criterion (AIC). However, such work is lacking in acoustic system. In this work, the interaction of Love waves with two-line pillared meta-surface is numerically investigated by Finite Element Method. Acoustic analogue of ATS, Fabry-Perot resonance and cavity modes are first demonstrated in two lines of identical pillars by varying the distance between the pillar lines. By detuning the radius of one line of pillars, Fabry-Perot resonance along with two different pillar resonances give rise to the acoustic analogue of EIT (AIT) when the distance between the pillar lines is a multiple of half wavelength. ATS and AIT formula models are used to fit the transmission spectra, showing good agreements with numerical results. The quality of the fit models is quantitatively evaluated by resorting to the AIC. We show that theoretical and analytical discrimination between ATS and AIT are methodologically complementary. These results should have important consequences for potential acoustic applications such as wave control, designing of meta-materials and bio-sensors.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Applied Physics Materials Science