Bistability in Two Simple Symmetrically Coupled Oscillators with Symmetry-broken Amplitude- and Phase-Locking

13 Jun 2018  ·  Röhm André, Lüdge Kathy, Schneider Isabelle ·

In the model system of two instantaneously and symmetrically coupled identical Stuart-Landau oscillators we demonstrate that there exist stable solutions with symmetry-broken amplitude- and phase-locking. These states are characterized by a non-trivial fixed phase and amplitude relationship between both oscillators, while simultaneously maintaining perfectly harmonic oscillations of the same frequency. While some of the surrounding bifurcations have been previously described, we present the first detailed analytical and numerical description of these states and present analytically and numerically how they are embedded in the bifurcation structure of the system, arising both from the in-phase as well as the anti-phase solutions, as well as through a saddle-node bifurcation. The dependence of both the amplitude and the phase on parameters can be expressed explicitly with analytic formulas. As opposed to previous reports, we find that these symmetry-broken states are stable, which can even be shown analytically. As an example of symmetry-breaking solutions in a simple and symmetric system, these states have potential applications as bistable states for switches in a wide array of coupled oscillatory systems.

PDF Abstract
No code implementations yet. Submit your code now


Chaotic Dynamics