Characterization of Defect Structure in Electrodeposited Nanocrystalline Ni Films

15 Mar 2017  ·  Kolonits Tamás, Jenei Péter, Tóth Bence G., Czigány Zsolt, Gubicza Jenő, Péter László, Bakonyi Imre ·

The microstructure of electrodeposited Ni films produced without and with organic additives (saccharin and formic acid) was investigated by X-ray diffraction (XRD) line profile analysis and cross-sectional transmission electron microscopy (TEM). Whereas the general effect of these additives on the microstructure (elimination of columnar growth as well as grain refinement) was reproduced, the pronounced intention of this study was to compare the results of various seldom-used high-performance structural characterization methods on identical electrodeposited specimens in order to reveal fine details of structural changes qualitatively not very common in this field... In the film deposited without additives, a columnar structure was observed showing similarities to the T-zone of structure zone models. Both formic acid and saccharin additives resulted in equiaxed grains with reduced size, as well as increased dislocation and twin fault densities in the nanocrystalline films. Moreover, the structure became homogeneous and free of texture within the total film thickness due to the additives. Saccharin yielded smaller grain size and larger defect density than formic acid. A detailed analysis of the grain size and twin boundary spacing distributions was carried out with the complementary application of TEM and XRD, by carefully distinguishing between the TEM and XRD grain sizes. read more

PDF Abstract
No code implementations yet. Submit your code now


Materials Science