DeePMD-kit v3: A Multiple-Backend Framework for Machine Learning Potentials

26 Feb 2025  ·  Jinzhe Zeng, Duo Zhang, Anyang Peng, Xiangyu Zhang, Sensen He, Yan Wang, Xinzijian Liu, Hangrui Bi, Yifan Li, Chun Cai, Chengqian Zhang, Yiming Du, Jia-Xin Zhu, Pinghui Mo, Zhengtao Huang, Qiyu Zeng, Shaochen Shi, Xuejian Qin, Zhaoxi Yu, Chenxing Luo, Ye Ding, Yun-Pei Liu, Ruosong Shi, Zhenyu Wang, Sigbjørn Løland Bore, Junhan Chang, Zhe Deng, Zhaohan Ding, Siyuan Han, Wanrun Jiang, Guolin Ke, Zhaoqing Liu, Denghui Lu, Koki Muraoka, Hananeh Oliaei, Anurag Kumar Singh, Haohui Que, Weihong Xu, Zhangmancang Xu, Yong-Bin Zhuang, Jiayu Dai, Timothy J. Giese, Weile Jia, Ben Xu, Darrin M. York, Linfeng Zhang, Han Wang ·

In recent years, machine learning potentials (MLPs) have become indispensable tools in physics, chemistry, and materials science, driving the development of software packages for molecular dynamics (MD) simulations and related applications. These packages, typically built on specific machine learning frameworks such as TensorFlow, PyTorch, or JAX, face integration challenges when advanced applications demand communication across different frameworks. The previous TensorFlow-based implementation of DeePMD-kit exemplified these limitations. In this work, we introduce DeePMD-kit version 3, a significant update featuring a multi-backend framework that supports TensorFlow, PyTorch, JAX, and PaddlePaddle backends, and demonstrate the versatility of this architecture through the integration of other MLPs packages and of Differentiable Molecular Force Field. This architecture allows seamless backend switching with minimal modifications, enabling users and developers to integrate DeePMD-kit with other packages using different machine learning frameworks. This innovation facilitates the development of more complex and interoperable workflows, paving the way for broader applications of MLPs in scientific research.

PDF Abstract