Diffusiophoresis driven colloidal manipulation and shortcuts to adiabaticity

11 Jan 2021  ·  Parvin Bayati, Emmanuel Trizac ·

While compressing a colloidal state by optical means alone has been previously achieved through a specific time-dependence of the trap stiffness, realizing quickly the reverse transformation stumbles upon the necessity of a transiently expulsive trap. To circumvent this difficulty, we propose to drive the colloids by a combination of optical trapping and diffusiophoretic forces, both time-dependent. Forcing via diffusiophoresis is enforced by controlling the salt concentration at the boundary of the domain where the colloids are confined. The method takes advantage of the separation of time scales between salt and colloidal dynamics, and realizes a fast decompression in an optical trap that remains confining at all times. We thereby obtain a so-called shortcut to adiabaticity protocol where colloidal dynamics, enslaved to salt dynamics, can nevertheless be controlled as desired.

PDF Abstract
No code implementations yet. Submit your code now


Soft Condensed Matter Chemical Physics