Dynamic Kibble-Zurek scaling framework for open dissipative many-body systems crossing quantum transitions

17 Mar 2020  ·  Rossini Davide, Vicari Ettore ·

We study the quantum dynamics of many-body systems, in the presence of dissipation due to the interaction with the environment, under Kibble-Zurek (KZ) protocols in which one Hamiltonian parameter is slowly, and linearly in time, driven across the critical value of a zero-temperature quantum transition. In particular we address whether, and under which conditions, open quantum systems can develop a universal dynamic scaling regime similar to that emerging in closed systems. We focus on a class of dissipative mechanisms whose dynamics can be reliably described through a Lindblad master equation governing the time evolution of the system's density matrix. We argue that a dynamic scaling limit exists even in the presence of dissipation, whose main features are controlled by the universality class of the quantum transition. This requires a particular tuning of the dissipative interactions, whose decay rate $u$ should scale as $u\sim t_s^{-\kappa}$ with increasing the time scale $t_s$ of the KZ protocol, where the exponent $\kappa = z/(y_\mu+z)$ depends on the dynamic exponent $z$ and the renormalization-group dimension $y_\mu$ of the driving Hamiltonian parameter. Our dynamic scaling arguments are supported by numerical results for KZ protocols applied to a one-dimensional fermionic wire undergoing a quantum transition in the same universality class of the quantum Ising chain, in the presence of dissipative mechanisms which include local pumping, decay, and dephasing.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Statistical Mechanics Quantum Physics