Engineering of topological state transfer and topological beam splitter in an even-size Su-Schrieffer-Heeger chain

27 Jul 2020  ·  Qi Lu, Wang Guo-Li, Liu Shutian, Zhang Shou, Wang Hong-Fu ·

The usual Su-Schrieffer-Heeger model with an even number of lattice sites possesses two degenerate zero energy modes. The degeneracy of the zero energy modes leads to the mixing between the topological left and right edge states, which makes it difficult to implement the state transfer via topological edge channel... Here, enlightened by the Rice-Male topological pumping, we find that the staggered periodic next-nearest neighbor hoppings can also separate the initial mixed edge states, which ensures the state transfer between topological left and right edge states. Significantly, we construct an unique topological state transfer channel by introducing the staggered periodic on-site potentials and the periodic next-nearest neighbor hoppings added only on the odd sites simultaneously, and find that the state initially prepared at the last site can be transfered to the first two sites with the same probability distribution. This special topological state transfer channel is expected to realize a topological beam splitter, whose function is to make the initial photon at one position appear at two different positions with the same probability. Further, we demonstrate the feasibility of implementing the topological beam splitter based on the circuit quantum electrodynamic lattice. Our scheme opens up a new way for the realization of topological quantum information processing and provides a new path towards the engineering of new type of quantum optical device. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics Mesoscale and Nanoscale Physics