Improved Approximate Degree Bounds For k-distinctness

19 Feb 2020 Mande Nikhil S. Thaler Justin Zhu Shuchen

An open problem that is widely regarded as one of the most important in quantum query complexity is to resolve the quantum query complexity of the k-distinctness function on inputs of size N. While the case of k=2 (also called Element Distinctness) is well-understood, there is a polynomial gap between the known upper and lower bounds for all constants k>2. Specifically, the best known upper bound is O(N^{(3/4)-1/(2^{k+2}-4)}) (Belovs, FOCS 2012), while the best known lower bound for k >= 2 is Omega(N^{2/3} + N^{(3/4)-1/(2k)}) (Aaronson and Shi, J.~ACM 2004; Bun, Kothari, and Thaler, STOC 2018)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Categories


  • QUANTUM PHYSICS
  • COMPUTATIONAL COMPLEXITY