Learned discretizations for passive scalar advection in a 2-D turbulent flow
The computational cost of fluid simulations increases rapidly with grid resolution. This has given a hard limit on the ability of simulations to accurately resolve small scale features of complex flows. Here we use a machine learning approach to learn a numerical discretization that retains high accuracy even when the solution is under-resolved with classical methods. We apply this approach to passive scalar advection in a two-dimensional turbulent flow. The method maintains the same accuracy as traditional high-order flux-limited advection solvers, while using $4\times$ lower grid resolution in each dimension. The machine learning component is tightly integrated with traditional finite-volume schemes and can be trained via an end-to-end differentiable programming framework. The solver can achieve near-peak hardware utilization on CPUs and accelerators via convolutional filters. Code is available at https://github.com/google-research/data-driven-pdes
PDF Abstract