Modeling neutrino-nucleus interaction at intermediate energies

24 Jan 2020  ·  González-Jiménez R., Jachowicz N., Nikolakopoulos A., Nys J., Van Cuyck T., Van Dessel N., Niewczas K., Pandey V. ·

We present the current status of the research activities of the Ghent group on neutrino-nucleus interactions. These consist in the modeling of some of the relevant neutrino-nucleus reaction channels at intermediate energies: low-energy nuclear excitations, quasielastic scattering, two-nucleon knockout processes and single-pion production. The low-energy nuclear excitations and the quasielastic peak are described using a Hartree-Fock-CRPA (continuum random phase approximation) model that takes into account nuclear long-range correlations as well as the distortion of the outgoing nucleon wave function. We include two-body current mechanisms through short-range correlations and meson-exchange currents. Their influence on one- and two-nucleon knockout responses is computed. Bound and outgoing nucleons are treated within the same mean-field framework. Finally, for modeling of the neutrino-induced single-pion production, we use a low-energy model that contains resonances and the background contributions required by chiral symmetry. This low-energy model is combined with a Regge approach into a Hybrid model, which allows us to make predictions beyond the resonance region.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Nuclear Theory