Multi-Stage Transmission Line Flow Control Using Centralized and Decentralized Reinforcement Learning Agents

16 Feb 2021  ·  Xiumin Shang, Jinping Yang, Bingquan Zhu, Lin Ye, Jing Zhang, Jianping Xu, Qin Lyu, Ruisheng Diao ·

Planning future operational scenarios of bulk power systems that meet security and economic constraints typically requires intensive labor efforts in performing massive simulations. To automate this process and relieve engineers' burden, a novel multi-stage control approach is presented in this paper to train centralized and decentralized reinforcement learning agents that can automatically adjust grid controllers for regulating transmission line flows at normal condition and under contingencies. The power grid flow control problem is formulated as Markov Decision Process (MDP). At stage one, centralized soft actor-critic (SAC) agent is trained to control generator active power outputs in a wide area to control transmission line flows against specified security limits. If line overloading issues remain unresolved, stage two is used to train decentralized SAC agent via load throw-over at local substations. The effectiveness of the proposed approach is verified on a series of actual planning cases used for operating the power grid of SGCC Zhejiang Electric Power Company.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods