Multicompartment Magnetic Resonance Fingerprinting

28 Feb 2018  ·  Sunli Tang, Carlos Fernandez-Granda, Sylvain Lannuzel, Brett Bernstein, Riccardo Lattanzi, Martijn Cloos, Florian Knoll, Jakob Assländer ·

Magnetic resonance fingerprinting (MRF) is a technique for quantitative estimation of spin-relaxation parameters from magnetic-resonance data. Most current MRF approaches assume that only one tissue is present in each voxel, which neglects the tissue's microstructure, and may lead to artifacts in the recovered parameter maps at boundaries between tissues. In this work, we propose a multicompartment MRF model that accounts for the presence of multiple tissues per voxel. The model is fit to the data by iteratively solving a sparse linear inverse problem at each voxel, in order to express the magnetization signal as a linear combination of a few fingerprints in the precomputed dictionary. Thresholding-based methods commonly used for sparse recovery and compressed sensing do not perform well in this setting due to the high local coherence of the dictionary. Instead, we solve this challenging sparse-recovery problem by applying reweighted-l1-norm regularization, implemented using an efficient interior-point method. The proposed approach is validated with simulated data at different noise levels and undersampling factors, as well as with a controlled phantom imaging experiment on a clinical magnetic-resonance system.

PDF Abstract
No code implementations yet. Submit your code now


Medical Physics Numerical Analysis Numerical Analysis Optimization and Control