Narrow-line cooling and imaging of Ytterbium atoms in an optical tweezer array

24 Oct 2018  ·  Saskin Samuel, Wilson Jack, Grinkemeyer Brandon, Thompson Jeff ·

Engineering controllable, strongly interacting many-body quantum systems is at the frontier of quantum simulation and quantum information processing. Arrays of laser-cooled neutral atoms in optical tweezers have emerged as a promising platform, because of their flexibility and the potential for strong interactions via Rydberg states. Existing neutral atom array experiments utilize alkali atoms, but alkaline-earth atoms offer many advantages in terms of coherence and control, and also open the door to new applications in precision measurement and timekeeping. In this work, we present a technique to trap individual alkaline-earth-like Ytterbium (Yb) atoms in optical tweezer arrays. The narrow $^1S_0$-$^3P_1$ intercombination line is used for both cooling and imaging in a magic-wavelength optical tweezer at 532 nm. The low Doppler temperature allows for imaging near the saturation intensity, resulting in a very high atom detection fidelity. We demonstrate the imaging fidelity concretely by observing rare ($<$ 1 in $10^4$ images) spontaneous quantum jumps into and out of a metastable state. We also demonstrate stochastic loading of atoms into a two-dimensional, 144-site tweezer array. This platform will enable advances in quantum information processing, quantum simulation and precision measurement. The demonstrated narrow-line Doppler imaging may also be applied in tweezer arrays or quantum gas microscopes using other atoms with similar transitions, such as Erbium and Dysprosium.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics Atomic Physics