On the accuracy of retinal protonated Schiff base models

31 Jan 2018  ·  Park Jae Woo, Shiozaki Toru ·

We investigate the molecular geometries of the ground state and the minimal energy conical intersections (MECIs) between the ground and first excited states of the models for the retinal protonated Schiff base in the gas phase using the extended multistate complete active space second-order perturbation theory (XMS-CASPT2). The biggest model in this work is the rhodopsin chromophore truncated between the {\epsilon} and {\delta} carbon atoms, which consists of 54 atoms and 12-orbital {\pi} conjugation. The results are compared with those obtained by the state-averaged complete active space self-consistent field (SA-CASSCF). The XMS-CASPT2 results suggest that the minimum energy conical intersection associated with the so-called 13-14 isomerization is thermally inaccessible, which is in contrast to the SA-CASSCF results. The differences between the geometries of the conical intersections computed by SA-CASSCF and XMS-CASPT2 are ascribed to the fact that the charge transfer states are more stabilized by dynamical electron correlation than the diradicaloid states. The impact of the various choices of active spaces, basis sets, and state averaging schemes is also examined.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Chemical Physics