Probabilistic performance estimators for computational chemistry methods: Systematic Improvement Probability and Ranking Probability Matrix. II. Applications

3 Mar 2020  ·  Pascal Pernot, Andreas Savin ·

In the first part of this study (Paper I), we introduced the systematic improvement probability (SIP) as a tool to assess the level of improvement on absolute errors to be expected when switching between two computational chemistry methods. We developed also two indicators based on robust statistics to address the uncertainty of ranking in computational chemistry benchmarks: Pinv , the inversion probability between two values of a statistic, and Pr , the ranking probability matrix... In this second part, these indicators are applied to nine data sets extracted from the recent benchmarking literature. We illustrate also how the correlation between the error sets might contain useful information on the benchmark dataset quality, notably when experimental data are used as reference. read more

PDF Abstract

Categories


Chemical Physics Data Analysis, Statistics and Probability