Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe$_2$

16 Jul 2019  ·  Lüpke Felix, Waters Dacen, de la Barrera Sergio C., Widom Michael, Mandrus David G., Yan Jiaqiang, Feenstra Randall M., Hunt Benjamin M. ·

The quantum spin Hall (QSH) state was recently demonstrated in monolayers of the transition metal dichalcogenide 1T'-WTe$_2$ and is characterized by a band gap in the two-dimensional (2D) interior and helical one-dimensional (1D) edge states. Inducing superconductivity in the helical edge states would result in a 1D topological superconductor, a highly sought-after state of matter. In the present study, we use a novel dry-transfer flip technique to place atomically-thin layers of WTe$_2$ on a van der Waals superconductor, NbSe$_2$. Using scanning tunneling microscopy and spectroscopy (STM/STS), we demonstrate atomically clean surfaces and interfaces and the presence of a proximity-induced superconducting gap in the WTe$_2$ for thicknesses from a monolayer up to 7 crystalline layers. At the edge of the WTe$_2$ monolayer, we show that the superconducting gap coexists with the characteristic spectroscopic signature of the QSH edge state. Taken together, these observations provide conclusive evidence for proximity-induced superconductivity in the QSH edge state in WTe$_2$, a crucial step towards realizing 1D topological superconductivity and Majorana bound states in this van der Waals material platform.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Mesoscale and Nanoscale Physics Materials Science