Quantum Parrondo's games using quantum walks

11 Sep 2012  ·  Adrian P. Flitney ·

We study a quantum walk in one-dimension using two different "coin" operators. By mixing two operators, both of which give a biased walk with negative expectation value for the walker position, it is possible to reverse the bias through interference effects... This effect is analogous to that in Parrondo's games, where alternating two losing (gambling) games can produce a winning game. The walker bias is produced by introducing a phase factor into the coin operator, with two different phase factors giving games $A$ and $B$. We give the range of phases for which the Parrondo effect can be obtained with $A$ and $B$ played alternately or in other (repeated) deterministic sequences. The effect is transitory. For sufficiently large times the original bias resumes. read more

PDF Abstract
No code implementations yet. Submit your code now


Quantum Physics 91A15