Quantum stochastic transport along chains

25 Jun 2020  ·  Shapira Dekel, Cohen Doron ·

The spreading of a particle along a chain, and its relaxation, are central themes in statistical and quantum mechanics. One wonders what are the consequences of the interplay between coherent and stochastic transitions. This fundamental puzzle has not been addressed in the literature, though closely related themes were in the focus of the Physics literature throughout the last century, highlighting quantum versions of Brownian motion. Most recently this question has surfaced again in the context of photo-synthesis. Here we consider both an infinite tight-binding chain and a finite ring within the framework of an Ohmic master equation. With added disorder it becomes the quantum version of the Sinai-Derrida-Hatano-Nelson model, which features sliding and delocalization transitions. We highlight non-monotonic dependence of the current on the bias, and a counter-intuitive enhancement of the effective disorder due to coherent hopping.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Statistical Mechanics Disordered Systems and Neural Networks Mesoscale and Nanoscale Physics Quantum Physics