Quantumness of Relative Incompatibility

27 Sep 2019  ·  Shukla Manish Kumar, Mundra Rounak, Pati Arun K, Chakrabarty Indranil, Wu Junde ·

We propose a new measure of relative incompatibility for a quantum system with respect to two non-commuting observables, and call it quantumness of relative incompatibility. In case of a classical state, order of observation is inconsequential, hence probability distribution of outcomes of any observable remains undisturbed. We define relative entropy of the two marginal probability distributions as a measure of quantumness in the state, which is revealed only in presence of two non-commuting observables. Like all other measures, we show that the proposed measure satisfies some basic axioms. Also, we find that this measure depicts complementarity with quantum coherence. The relation is more vivid when we choose one of the observables in such a way that its eigen basis matches with the basis in which the coherence is measured. Our result indicates that the quantumness in a single system is still an interesting question to explore and there can be an inherent feature of the state which manifests beyond the idea of quantum coherence.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics