A Learning Approach to Robot-Agnostic Force-Guided High Precision Assembly

15 Oct 2020  ·  Jieliang Luo, Hui Li ·

In this work we propose a learning approach to high-precision robotic assembly problems. We focus on the contact-rich phase, where the assembly pieces are in close contact with each other. Unlike many learning-based approaches that heavily rely on vision or spatial tracking, our approach takes force/torque in task space as the only observation. Our training environment is robotless, as the end-effector is not attached to any specific robot. Trained policies can then be applied to different robotic arms without re-training. This approach can greatly reduce complexity to perform contact-rich robotic assembly in the real world, especially in unstructured settings such as in architectural construction. To achieve it, we have developed a new distributed RL agent, named Recurrent Distributed DDPG (RD2), which extends Ape-X DDPG with recurrency and makes two structural improvements on prioritized experience replay. Our results show that RD2 is able to solve two fundamental high-precision assembly tasks, lap-joint and peg-in-hole, and outperforms two state-of-the-art algorithms, Ape-X DDPG and PPO with LSTM. We have successfully evaluated our robot-agnostic policies on three robotic arms, Kuka KR60, Franka Panda, and UR10, in simulation. The video presenting our experiments is available at https://sites.google.com/view/rd2-rl

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods