Role of interlayer spacing on electronic, thermal and optical properties of BN-codoped bilayer graphene:\break Influence of the interlayer and the induced dipole-dipole interactions

18 Feb 2021  ·  Nzar Rauf Abdullah, Hunar Omar Rashid, Chi-Shung Tang, Andrei Manolescu, Vidar Gudmundsson ·

We demonstrate that the electronic, thermal, and optical properties of a graphene bilayer with boron and nitrogen dopant atoms can be controlled by the interlayer distance between the layers in which the interaction energy and the van der Waals interaction between the dopant atoms play an essential role. We find a conversion of an AA- to an AB-stacked bilayer graphene caused by the repulsive interaction between dopant atoms. At a short interlayer distance, a strong repulsive interaction inducing a strong electric dipole moment of the dopant atoms is found. This gives rise to a breaking of the high symmetry, opening up a bandgap. Consequently, a considerable change in thermoelectric properties such as the Seebeck coefficient and the figure of merit are seen. The repulsive interaction is reduced by increasing the interlayer distance, and at a large interlayer distance the conversion process of the stacking order vanishes. A small bandgap is found leading to a low Seebeck coefficient and a figure of merit. For both short and large interlayer distances, a prominent peak in the optical response is found in the visible range and the peak position is inversely proportional to the interlayer distance.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Mesoscale and Nanoscale Physics