SchNetPack: A Deep Learning Toolbox For Atomistic Systems

4 Sep 2018  ·  K. T. Schütt, P. Kessel, M. Gastegger, K. Nicoli, A. Tkatchenko, K. -R. Müller ·

SchNetPack is a toolbox for the development and application of deep neural networks to the prediction of potential energy surfaces and other quantum-chemical properties of molecules and materials. It contains basic building blocks of atomistic neural networks, manages their training and provides simple access to common benchmark datasets. This allows for an easy implementation and evaluation of new models. For now, SchNetPack includes implementations of (weighted) atomcentered symmetry functions and the deep tensor neural network SchNet as well as ready-to-use scripts that allow to train these models on molecule and material datasets. Based upon the PyTorch deep learning framework, SchNetPack allows to efficiently apply the neural networks to large datasets with millions of reference calculations as well as parallelize the model across multiple GPUs. Finally, SchNetPack provides an interface to the Atomic Simulation Environment in order to make trained models easily accessible to researchers that are not yet familiar with neural networks.

PDF Abstract