Searches for Sterile Neutrinos with the IceCube Detector

29 Aug 2016  ·  The IceCube Collaboration ·

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous $\nu_\mu$ or $\bar{\nu}_\mu$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $\mathrm{sin}^2 2\theta_{24} \leq$ 0.02 at $\Delta m^2 \sim$ 0.3 $\mathrm{eV}^2$ at the 90\% confidence level. The allowed region from global analysis of appearance experiments, including LSND and MiniBooNE, is excluded at approximately the 99\% confidence level for the global best fit value of $|$U$_{e4}|^2$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


High Energy Physics - Experiment High Energy Astrophysical Phenomena