Self Sparse Generative Adversarial Networks

26 Jan 2021  ·  Wenliang Qian, Yang Xu, WangMeng Zuo, Hui Li ·

Generative Adversarial Networks (GANs) are an unsupervised generative model that learns data distribution through adversarial training. However, recent experiments indicated that GANs are difficult to train due to the requirement of optimization in the high dimensional parameter space and the zero gradient problem. In this work, we propose a Self Sparse Generative Adversarial Network (Self-Sparse GAN) that reduces the parameter space and alleviates the zero gradient problem. In the Self-Sparse GAN, we design a Self-Adaptive Sparse Transform Module (SASTM) comprising the sparsity decomposition and feature-map recombination, which can be applied on multi-channel feature maps to obtain sparse feature maps. The key idea of Self-Sparse GAN is to add the SASTM following every deconvolution layer in the generator, which can adaptively reduce the parameter space by utilizing the sparsity in multi-channel feature maps. We theoretically prove that the SASTM can not only reduce the search space of the convolution kernel weight of the generator but also alleviate the zero gradient problem by maintaining meaningful features in the Batch Normalization layer and driving the weight of deconvolution layers away from being negative. The experimental results show that our method achieves the best FID scores for image generation compared with WGAN-GP on MNIST, Fashion-MNIST, CIFAR-10, STL-10, mini-ImageNet, CELEBA-HQ, and LSUN bedrooms, and the relative decrease of FID is 4.76% ~ 21.84%.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods