Spin Orbit Correlations and the Structure of the Nucleon

30 Sep 2019  ·  Avakian Harut, Parsamyan Bakur, Prokudin Alexey ·

Extensive experimental measurements of spin and azimuthal asymmetries in various processes have stimulated theoretical interest and progress in studies of the nucleon structure. Interpretation of experimental data in terms of parton distribution functions, generalized to describe transverse momentum and spatial parton distributions, is one of the main remaining challenges of modern nuclear physics... These new parton distribution and fragmentation functions encode the motion and the position of partons and are often referred to as three-dimensional distributions describing the three-dimensional (3D) structure of the nucleon. Understanding of the production mechanism and performing phenomenological studies compatible with factorization theorems using minimal model assumptions are goals of analysis of the experimental data. HERMES and COMPASS Collaborations and experiments at Jefferson Lab have collected a wealth of polarized and unpolarized Semi-Inclusive Deep Inelastic Scattering (SIDIS) data. These data play a crucial role in current understanding of nucleon spin-phenomena as they cover a broad kinematical range. The Jefferson Lab 12 GeV upgrade data on polarized and unpolarized SIDIS will have remarkably higher precision at large parton fractional momentum $x$ compared to the existing data. We argue that both experimental and phenomenological communities will benefit from development of a comprehensive extraction framework that will facilitate extraction of 3D nucleon structure, help understand various assumptions in extraction and data analysis, help to insure the model independence of the experimental data and validate the extracted functions. In this review we present the latest developments in the field of the spin asymmetries and discuss different components involved in precision extraction of 3D partonic distribution and fragmentation functions. read more

PDF Abstract
No code implementations yet. Submit your code now


High Energy Physics - Experiment High Energy Physics - Phenomenology