T-Dualities and Doubled Geometry of the Principal Chiral Model

15 Nov 2019  ·  Marotta Vincenzo E., Pezzella Franco, Vitale Patrizia ·

The Principal Chiral Model (PCM) defined on the group manifold of SU(2) is here investigated with the aim of getting a further deepening of its relation with Generalized and Doubled Geometry. A one-parameter family of equivalent Hamiltonian descriptions is introduced, and cast into the form of Born geometries. Then O(3,3) duality transformations of the target phase space are performed and we show that the resulting dual models are defined on the group SB(2,C) which is the Poisson-Lie dual of SU(2) in the Iwasawa decomposition of the Drinfel'd double SL(2, C). Moreover, starting from the Lagrangian approach, a new kind of duality is found between the SU(2) PCM and the natural one defined on SB(2,C) which is not an isometry of the target phase space. A parent action with doubled degrees of freedom and configuration space SL(2, C) is then defined that reduces to either one of the dually related models, once suitable constraints are implemented.

PDF Abstract
No code implementations yet. Submit your code now

Categories


High Energy Physics - Theory Mathematical Physics Mathematical Physics