The Conversion of CESR to Operate as the Test Accelerator, CesrTA, Part 2: Vacuum Modifications

26 Jun 2015  ·  Billing M. G., Li Y. ·

Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper, the second in a series of four, discusses the modifications of the vacuum system necessary for the conversion of CESR to the test accelerator, CesrTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. A separate paper describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. While the initial studies of CesrTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CesrTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Accelerator Physics