The effect of anomalous elasticity on the bubbles in van der Waals heterostructures

27 Sep 2019  ·  Lyublinskaya A. A., Babkin S. S., Burmistrov I. S. ·

It is shown that the anomalous elasticity of membranes affects the profile and thermodynamics of a bubble in van der Waals heterostructures. Our theory generalizes the non-linear plate theory as well as membrane theory of the pressurised blister test to incorporate the power-law scale dependence of the bending rigidity and Young's modulus of a two-dimensional crystalline membrane. This scale dependence caused by long-ranged interaction of relevant thermal fluctuations (flexural phonons), is responsible for the anomalous Hooke's law observed recently in graphene. It is shown that this anomalous elasticity affects dependence of the maximal height of the bubble on its radius and temperature. We identify the characteristic temperature above which the anomalous elasticity is important. It is suggested that for graphene-based van der Waals heterostructures the predicted anomalous regime is experimentally accessible at the room temperature.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Mesoscale and Nanoscale Physics