The physical and mechanical properties of hafnium orthosilicate: experiments and first-principles calculations

17 Mar 2020  ·  Ding Zhidong, Ridley Mackenzie, Deijkers Jeroen, Liu Naiming, Hoque Md Shafkat Bin, Gaskins John, Zebarjadi Mona, Hopkins Patrick, Wadley Haydn, Opila Elizabeth, Esfarjani Keivan ·

Hafnium orthosilicate (HfSiO4: hafnon) has been proposed as an environmental barrier coating (EBC) material to protect silicon coated, silicon-based ceramic materials at high temperatures and as a candidate dielectric material in microelectronic devices. It can naturally form at the interface between silicon dioxide (SiO2) and hafnia (HfO2). When used in these applications, its coefficient of thermal expansion (CTE) should match that of silicon and SiC composites to reduce the stored elastic strain energy, and thus risk of failure of these systems. The physical, mechanical, thermodynamic and thermal transport properties of hafnon have been investigated using a combination of both density functional theory (DFT) calculations and experimental assessments. The average linear coefficient of thermal expansion (CTE) calculated using the quasi-harmonic approximation increase from 3.06 10-6 K-1 to 6.36 10-6 K-1, as the temperature increases from 300 to 1500 K, in agreement with both X-ray diffraction lattice parameter and dilatometry measurements. The predicted thermal conductivity from Boltzmann transport theory was approximately 18 W/m.K at 300K. Both hot disk and laser flash measurements gave a thermal conductivity of 13.3 W/m.K. This slightly lower value is indicative of residual disorder in the experimental samples that was absent in the theoretical analysis. First-principles calculations and nanoindentation techniques were used to assess the ambient temperature elastic constants and bulk modulus respectively. The elastic properties obtained by both approaches agreed to within 5% validating the computational approach and its future use for study of the thermomechanical properties of other oxides or silicates.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Materials Science