Theory of Ion Aggregation and Gelation in Super-Concentrated Electrolytes

26 Feb 2020  ·  McEldrew Michael, Goodwin Zachary A. H., Bi Sheng, Bazant Martin Z., Kornyshev Alexei A. ·

In concentrated electrolytes with asymmetric or irregular ions, such as ionic liquids and solvent-in-salt electrolytes, ion association is more complicated than simple ion-pairing. Large branched aggregates can form at significant concentrations at even moderate salt concentrations. When the extent of ion association reaches a certain threshold, a percolating ionic gel networks can form spontaneously. Gelation is a phenomenon that is well known in polymer physics, but it is practically unstudied in concentrated electrolytes. However, despite this fact, the ion-pairing description is often applied to these systems for the sake of simplicity. In this work, drawing strongly from established theories in polymer physics, we develop a simple thermodynamic model of reversible ionic aggregation and gelation in concentrated electrolytes accounting for the competition between ion solvation and ion association. Our model predicts the populations of ionic clusters of different sizes as a function of salt concentration, it captures the onset of ionic gelation and also the post-gel partitioning of ions into the gel. We discuss the applicability of our model, as well as the implications of its predictions on thermodynamic, transport, and rheological properties.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Chemical Physics Statistical Mechanics