Universal Quantum Computation in Globally Driven Rydberg Atom Arrays

30 May 2023  ·  Francesco Cesa, Hannes Pichler ·

We develop a model for quantum computation with Rydberg atom arrays, which only relies on global driving, without the need of local addressing of the qubits: any circuit is executed by a sequence of global, resonant laser pulses on a static atomic arrangement. We present two constructions: for the first, the circuit is imprinted in the trap positions of the atoms and executed by the pulses; for the second, the atom arrangement is circuit-independent, and the algorithm is entirely encoded in the global driving sequence. Our results show in particular that a quadratic overhead in atom number is sufficient to eliminate the need for local control to realize a universal quantum processor. We give explicit protocols for all steps of an arbitrary quantum computation, and discuss strategies for error suppression specific to our model. Our scheme is based on dual-species processors with atoms subjected to Rydberg blockade constraints, but it might be transposed to other setups as well.

PDF Abstract
No code implementations yet. Submit your code now


Quantum Physics Atomic Physics