Work statistics across a quantum phase transition

18 Feb 2020  ·  Fei Zhaoyu, Freitas Nahuel, Cavina Vasco, Quan H. T., Esposito Massimiliano ·

We investigate the statistics of the work performed during a quench across a quantum phase transition using the adiabatic perturbation theory. It is shown that all the cumulants of work exhibit universal scaling behavior analogous to the Kibble-Zurek scaling for the average density of defects. Two kinds of transformations are considered: quenches between two gapped phases in which a critical point is traversed, and quenches that end near the critical point. In contrast to the scaling behavior of the density of defects, the scaling behavior of the work cumulants are shown to be qualitatively different for these two kinds of quenches. However, in both cases the corresponding exponents are fully determined by the dimension of the system and the critical exponents of the transition, as in the traditional Kibble-Zurek mechanism (KZM). Thus, our study deepens our understanding about the nonequilibrium dynamics of a quantum phase transition by revealing the imprint of the KZM on the work statistics.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics Statistical Mechanics