3-D Position Optimization of Solar-Powered Hovering UAV Relay in Optical Wireless Backhaul

29 Jan 2024  ·  Heyou Liu, Muhammad Salman Bashir, Mohamed-Slim Alouini ·

A major hurdle in widespread deployment of UAVs (unmanned aerial vehicle) in existing communications infrastructure is the limited UAV onboard energy. Therefore, this study considers solar energy harvesting UAVs for wireless communications. In this context, we consider three dimensional position optimization of a solar-powered UAV relay that connects a distant sensor field to an optical ground station (OGS) for data processing. The integrated sensor-UAV-OGS network utilizes radio frequency band for sensor-to-UAV links and the optical band for the UAV-to-OGS feeder link. Since atmospheric conditions affect both the harvested solar energy as well as the optical wireless signal, this study tackles UAV position optimization problems under various channel conditions such as clouds, atmospheric turbulence and dirt. From this study, we discover that the optimum position of the UAV -- that maximizes the end-to-end channel capacity -- is heavily dependent on the atmospheric channel conditions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here