A Case for Lifetime Reliability-Aware Neuromorphic Computing

4 Jul 2020  ·  Shihao Song, Anup Das ·

Neuromorphic computing with non-volatile memory (NVM) can significantly improve performance and lower energy consumption of machine learning tasks implemented using spike-based computations and bio-inspired learning algorithms. High voltages required to operate certain NVMs such as phase-change memory (PCM) can accelerate aging in a neuron's CMOS circuit, thereby reducing the lifetime of neuromorphic hardware. In this work, we evaluate the long-term, i.e., lifetime reliability impact of executing state-of-the-art machine learning tasks on a neuromorphic hardware, considering failure models such as negative bias temperature instability (NBTI) and time-dependent dielectric breakdown (TDDB). Based on such formulation, we show the reliability-performance trade-off obtained due to periodic relaxation of neuromorphic circuits, i.e., a stop-and-go style of neuromorphic computing.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here