A Computationally Efficient Neural Network Invariant to the Action of Symmetry Subgroups

18 Feb 2020  ·  Piotr Kicki, Mete Ozay, Piotr Skrzypczyński ·

We introduce a method to design a computationally efficient $G$-invariant neural network that approximates functions invariant to the action of a given permutation subgroup $G \leq S_n$ of the symmetric group on input data. The key element of the proposed network architecture is a new $G$-invariant transformation module, which produces a $G$-invariant latent representation of the input data. This latent representation is then processed with a multi-layer perceptron in the network. We prove the universality of the proposed architecture, discuss its properties and highlight its computational and memory efficiency. Theoretical considerations are supported by numerical experiments involving different network configurations, which demonstrate the effectiveness and strong generalization properties of the proposed method in comparison to other $G$-invariant neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here