A consistent and flexible framework for deep matrix factorizations

21 Jun 2022  ·  Pierre De Handschutter, Nicolas Gillis ·

Deep matrix factorizations (deep MFs) are recent unsupervised data mining techniques inspired by constrained low-rank approximations. They aim to extract complex hierarchies of features within high-dimensional datasets. Most of the loss functions proposed in the literature to evaluate the quality of deep MF models and the underlying optimization frameworks are not consistent because different losses are used at different layers. In this paper, we introduce two meaningful loss functions for deep MF and present a generic framework to solve the corresponding optimization problems. We illustrate the effectiveness of this approach through the integration of various constraints and regularizations, such as sparsity, nonnegativity and minimum-volume. The models are successfully applied on both synthetic and real data, namely for hyperspectral unmixing and extraction of facial features.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here