A Data-Driven Reconstruction Technique based on Newton's Method for Emission Tomography

19 Oct 2021  ·  Loizos Koutsantonis, Tiago Carneiro, Emmanuel Kieffer, Frederic Pinel, Pascal Bouvry ·

In this work, we present the Deep Newton Reconstruction Network (DNR-Net), a hybrid data-driven reconstruction technique for emission tomography inspired by Newton's method, a well-known iterative optimization algorithm. The DNR-Net employs prior information about the tomographic problem provided by the projection operator while utilizing deep learning approaches to a) imitate Newton's method by approximating the Newton descent direction and b) provide data-driven regularisation. We demonstrate that DNR-Net is capable of providing high-quality image reconstructions using data from SPECT phantom simulations by applying it to reconstruct images from noisy sinograms, each one containing 24 projections. The Structural Similarity Index (SSIM) and the Contrast-to-Noise ratio (CNR) were used to quantify the image quality. We also compare our results to those obtained by the OSEM method. According to the quantitative results, the DNR-Net produces reconstructions comparable to the ones produced by OSEM while featuring higher contrast and less noise.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here