A Deep Reinforcement Learning-based Adaptive Charging Policy for Wireless Rechargeable Sensor Networks

16 Aug 2022  ·  Ngoc Bui, Phi Le Nguyen, Viet Anh Nguyen, Phan Thuan Do ·

Wireless sensor networks consist of randomly distributed sensor nodes for monitoring targets or areas of interest. Maintaining the network for continuous surveillance is a challenge due to the limited battery capacity in each sensor. Wireless power transfer technology is emerging as a reliable solution for energizing the sensors by deploying a mobile charger (MC) to recharge the sensor. However, designing an optimal charging path for the MC is challenging because of uncertainties arising in the networks. The energy consumption rate of the sensors may fluctuate significantly due to unpredictable changes in the network topology, such as node failures. These changes also lead to shifts in the importance of each sensor, which are often assumed to be the same in existing works. We address these challenges in this paper by proposing a novel adaptive charging scheme using a deep reinforcement learning (DRL) approach. Specifically, we endow the MC with a charging policy that determines the next sensor to charge conditioning on the current state of the network. We then use a deep neural network to parametrize this charging policy, which will be trained by reinforcement learning techniques. Our model can adapt to spontaneous changes in the network topology. The empirical results show that the proposed algorithm outperforms the existing on-demand algorithms by a significant margin.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here