A Fast Effective Greedy Approach for MU-MIMO Beam Selection in mm-Wave and THz Communications

21 Jan 2024  ·  Rafid Umayer Murshed, Md Saheed Ullah, Mohammad Saquib ·

This paper addresses the beam-selection challenges in Multi-User Multiple Input Multiple Output (MU-MIMO) beamforming for mm-wave and THz channels, focusing on the pivotal aspect of spectral efficiency (SE) and computational efficiency. We introduce a novel approach, the Greedy Interference-Optimized Singular Vector Beam-selection (G-IOSVB) algorithm, which offers a strategic balance between high SE and low computational complexity. Our study embarks on a comparative analysis of G-IOSVB against the traditional IOSVB and the exhaustive Singular-Vector Beamspace Search (SVBS) algorithms. The findings reveal that while SVBS achieves the highest SE, it incurs significant computational costs, approximately 162 seconds per channel realization. In contrast, G-IOSVB aligns closely with IOSVB in SE performance yet is markedly more computationally efficient. Heatmaps vividly demonstrate this efficiency, highlighting G-IOSVB's reduced computation time without sacrificing SE. We also delve into the mathematical intricacies of G-IOSVB, demonstrating its theoretical and practical superiority through rigorous expressions and detailed algorithmic analysis. The numerical results illustrate that G-IOSVB stands out as an efficient, practical solution for MU-MIMO systems, making it a promising candidate for high-speed, high-efficiency wireless communication networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here