A Functional Characterization of Randomly Initialized Gradient Descent in Deep ReLU Networks

Despite their popularity and successes, deep neural networks are poorly understood theoretically and treated as 'black box' systems. Using a functional view of these networks gives us a useful new lens with which to understand them. This allows us us to theoretically or experimentally probe properties of these networks, including the effect of standard initializations, the value of depth, the underlying loss surface, and the origins of generalization. One key result is that generalization results from smoothness of the functional approximation, combined with a flat initial approximation. This smoothness increases with number of units, explaining why massively overparamaterized networks continue to generalize well.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here