A Low-cost Strategic Monitoring Approach for Scalable and Interpretable Error Detection in Deep Neural Networks

31 Oct 2023  ·  Florian Geissler, Syed Qutub, Michael Paulitsch, Karthik Pattabiraman ·

We present a highly compact run-time monitoring approach for deep computer vision networks that extracts selected knowledge from only a few (down to merely two) hidden layers, yet can efficiently detect silent data corruption originating from both hardware memory and input faults. Building on the insight that critical faults typically manifest as peak or bulk shifts in the activation distribution of the affected network layers, we use strategically placed quantile markers to make accurate estimates about the anomaly of the current inference as a whole. Importantly, the detector component itself is kept algorithmically transparent to render the categorization of regular and abnormal behavior interpretable to a human. Our technique achieves up to ~96% precision and ~98% recall of detection. Compared to state-of-the-art anomaly detection techniques, this approach requires minimal compute overhead (as little as 0.3% with respect to non-supervised inference time) and contributes to the explainability of the model.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here