A Method to Determine the Maximum Radius of Defocused Protons after Self-Modulation in AWAKE

30 Jan 2018  ·  Marlene Turner, Gschwendtner Edda, Muggli Patric ·

The AWAKE experiment at CERN aims to drive GV/m plasma wakefields with a self-modulated proton drive bunch, and to use them for electron acceleration. During the self-modulation process, protons are defocused by the transverse plasma wakefields and form a halo around the focused bunch core. The two-screen setup integrated in AWAKE measures the transverse, time-integrated proton bunch distribution downstream the \unit[10]{m} long plasma to detect defocused protons. By measuring the maximum radius of the defocused protons we attempt calculate properties of the self-modulation. In this article, we develop a routine to identify the maximum radius of the defocused protons, based on a standard contour method. We compare the maximum radius obtained from the contour to the logarithmic lineouts of the image to show that the determined radius identifies the edge of the distribution.

PDF Abstract
No code implementations yet. Submit your code now


Accelerator Physics Nuclear Experiment