Generalisation under gradient descent via deterministic PAC-Bayes

6 Sep 2022  ·  Eugenio Clerico, Tyler Farghly, George Deligiannidis, Benjamin Guedj, Arnaud Doucet ·

We establish disintegrated PAC-Bayesian generalisation bounds for models trained with gradient descent methods or continuous gradient flows. Contrary to standard practice in the PAC-Bayesian setting, our result applies to optimisation algorithms that are deterministic, without requiring any de-randomisation step. Our bounds are fully computable, depending on the density of the initial distribution and the Hessian of the training objective over the trajectory. We show that our framework can be applied to a variety of iterative optimisation algorithms, including stochastic gradient descent (SGD), momentum-based schemes, and damped Hamiltonian dynamics.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here