A Phone-based Distributed Ambient Temperature Measurement System with An Efficient Label-free Automated Training Strategy

16 Apr 2024  ·  Dayin Chen, Xiaodan Shi, Haoran Zhang, Xuan Song, Dongxiao Zhang, Yuntian Chen, Jinyue Yan ·

Enhancing the energy efficiency of buildings significantly relies on monitoring indoor ambient temperature. The potential limitations of conventional temperature measurement techniques, together with the omnipresence of smartphones, have redirected researchers'attention towards the exploration of phone-based ambient temperature estimation methods. However, existing phone-based methods face challenges such as insufficient privacy protection, difficulty in adapting models to various phones, and hurdles in obtaining enough labeled training data. In this study, we propose a distributed phone-based ambient temperature estimation system which enables collaboration among multiple phones to accurately measure the ambient temperature in different areas of an indoor space. This system also provides an efficient, cost-effective approach with a few-shot meta-learning module and an automated label generation module. It shows that with just 5 new training data points, the temperature estimation model can adapt to a new phone and reach a good performance. Moreover, the system uses crowdsourcing to generate accurate labels for all newly collected training data, significantly reducing costs. Additionally, we highlight the potential of incorporating federated learning into our system to enhance privacy protection. We believe this study can advance the practical application of phone-based ambient temperature measurement, facilitating energy-saving efforts in buildings.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here