A PPO-based DRL Auto-Tuning Nonlinear PID Drone Controller for Robust Autonomous Flights

30 Mar 2024  ·  Junyang Zhang, Cristian Emanuel Ocampo Rivera, Kyle Tyni, Steven Nguyen ·

This project aims to revolutionize drone flight control by implementing a nonlinear Deep Reinforcement Learning (DRL) agent as a replacement for traditional linear Proportional Integral Derivative (PID) controllers. The primary objective is to seamlessly transition drones between manual and autonomous modes, enhancing responsiveness and stability. We utilize the Proximal Policy Optimization (PPO) reinforcement learning strategy within the Gazebo simulator to train the DRL agent. Adding a $20,000 indoor Vicon tracking system offers <1mm positioning accuracy, which significantly improves autonomous flight precision. To navigate the drone in the shortest collision-free trajectory, we also build a 3 dimensional A* path planner and implement it into the real flight successfully.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here